Semantic Role Labeling with Neural Network Factors

نویسندگان

  • Nicholas FitzGerald
  • Oscar Täckström
  • Kuzman Ganchev
  • Dipanjan Das
چکیده

We present a new method for semantic role labeling in which arguments and semantic roles are jointly embedded in a shared vector space for a given predicate. These embeddings belong to a neural network, whose output represents the potential functions of a graphical model designed for the SRL task. We consider both local and structured learning methods and obtain strong results on standard PropBank and FrameNet corpora with a straightforward product-of-experts model. We further show how the model can learn jointly from PropBank and FrameNet annotations to obtain additional improvements on the smaller FrameNet dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network

We investigate mutual benefits between syntax and semantic roles using neural network models, by studying a parsing→SRL pipeline, a SRL→parsing pipeline, and a simple joint model by embedding sharing. The integration of syntactic and semantic features gives promising results in a Chinese Semantic Treebank, demonstrating large potentials of neural models for joint parsing and semantic role label...

متن کامل

Chinese Semantic Role Labeling with Bidirectional Recurrent Neural Networks

Traditional approaches to Chinese Semantic Role Labeling (SRL) almost heavily rely on feature engineering. Even worse, the long-range dependencies in a sentence can hardly be modeled by these methods. In this paper, we introduce bidirectional recurrent neural network (RNN) with long-short-term memory (LSTM) to capture bidirectional and long-range dependencies in a sentence with minimal feature ...

متن کامل

Dependency-Based Semantic Role Labeling using Convolutional Neural Networks

We describe a semantic role labeler with stateof-the-art performance and low computational requirements, which uses convolutional and time-domain neural networks. The system is designed to work with features derived from a dependency parser output. Various system options and architectural details are discussed. Incremental experiments were run to explore the benefits of adding increasingly more...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

ICL-HD at SemEval-2016 Task 8: Meaning Representation Parsing - Augmenting AMR Parsing with a Preposition Semantic Role Labeling Neural Network

We describe our submission system to the SemEval-2016 Task 8 on Abstract Meaning Representation (AMR) Parsing. We attempt to improve AMR parsing by exploiting preposition semantic role labeling information retrieved from a multi-layer feed-forward neural network. Prepositional semantics is included as features into the transition-based AMR parsing system CAMR (Wang, Xue, and S. Pradhan 2015a). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015